Available architectures
Here is the complete list of all the neural network architectures available in Studio. When available, links to the research papers are provided.
Pre-training
All our architectures are pre-trained on real-world, open datasets. Training them from scratch would take days or weeks to have correct predictions. Thanks to the pre-training, all you are doing is fine-tuning the model to your specific use-case. You can see the pre-training dataset in the table below.
Classification and tagging backbone architectures
Backbone
Inference time on Nvidia T4 (ms)
(Sync)
Inference time on Nvidia T4 (ms) (ASync)
Input size
Training batch size
Trained on
Research paper
EfficientNet B0
25.0
15.9
224x224
32
ImageNet
EfficientNet B1
27.6
17.5
240x240
32
ImageNet
EfficientNet B2
28.5
18.2
260x260
32
ImageNet
EfficientNet B3
30.6
19.6
300x300
32
ImageNet
EfficientNet B4
35.2
23.2
380x380
16
ImageNet
EfficientNet B5
47.8
35.6
456x456
8
ImageNet
EfficientNet B6
66.8
55.6
528x528
4
ImageNet
Inception-Resnet v2
38.8
28.2
299x299
32
ImageNet
ResNet-50
28.6
17.8
224x224
32
ImageNet
ResNet-101
33.8
21.2
224x224
32
ImageNet
ResNet-152
37.0
24.6
224x224
32
ImageNet
Inception v1
22.8
15.0
224x224
32
ImageNet
Inception v2
25.4
15.9
224x224
32
ImageNet
Inception v3
28.4
20.2
299x299
32
ImageNet
Inception v4
34.8
25.5
299x299
32
ImageNet
VGG 16
78.3
67.0
224x224
32
ImageNet
Detection meta-architectures
Architecture
Backbone
Inference time on Nvidia T4 (ms) (Sync)
Inference time on Nvidia T4 (ms) (ASync)
Input size
Training batch size
Trained on
Research paper
EfficientDet
Eff. Net B0
82.6
49.2
512x512
16
COCO 2018
Eff. Net B1
117
69.3
640x640
8
COCO 2018
Eff. Net B2
158
96.3
768x768
4
COCO 2018
Eff. Net B3
221
132
896x896
2
COCO 2018
Eff. Net B4
316
173
1024x1024
1
COCO 2018
Yolo v3
Darknet 53
56.7
36.0
416x416
64
ImageNet 2012
Yolo v8
Nano
44.3
28.6
640x640
16
COCO 2018
Small
4.74
31.6
640x640
16
COCO 2018
Medium
57.4
45.0
640x640
16
COCO 2018
Large
75.5
64.3
640x640
8
COCO 2018
Extra
99.3
87.7
640x640
8
COCO 2018
Faster-RCNN
Resnet-50
N/A
N/A
1024x1024*
1
COCO 2018
Resnet-101
174
169
1024x1024*
1
COCO 2018
SSD
Inception v2
34.8
17.0
300x300
24
COCO 2018
MobileNet v1
32.5
16.4
300x300
24
COCO 2018
MobileNet v2
32.4
18.1
300x300
24
COCO 2018
SSDLite
MobileNet v2
28.7
16.2
300x300
24
COCO 2018
(*) Faster-RCNN does not require a fixed image input size. As such they can accept images from 600 to 1024 pixel.
Last updated