Available architectures
Here is the complete list of all the neural network architectures available in Studio. When available, links to the research papers are provided.
Here is the complete list of all the neural network architectures available in Studio. When available, links to the research papers are provided.
All our architectures are pre-trained on real-world, open datasets. Training them from scratch would take days or weeks to have correct predictions. Thanks to the pre-training, all you are doing is fine-tuning the model to your specific use-case. You can see the pre-training dataset in the table below.
(*) Faster-RCNN and RFCN do not require a fixed image input size. As such they can accept images from 600 to 1024 pixel.
Backbone
Inference time on Nvidia T4 (ms) (Run v1.0)
Inference time on Nvidia T4 (ms) (Run v1.1)
Input size
Training batch size
Trained on
Research paper
EfficientNet B0
10.4
10.7
224x224
32
ImageNet
EfficientNet B1
11.4
11.4
240x240
32
ImageNet
EfficientNet B2
12.5
12.2
260x260
32
ImageNet
EfficientNet B3
16.7
13.5
300x300
32
ImageNet
EfficientNet B4
24.8
19.8
380x380
16
ImageNet
EfficientNet B5
36.4
34.9
456x456
8
ImageNet
EfficientNet B6
61.0
58.4
528x528
4
ImageNet
Inception-Resnet v2
33.1
26.7
299x299
32
ImageNet
ResNet-50
11.2
11.6
224x224
32
ImageNet
ResNet-101
16.8
N/A
224x224
32
ImageNet
ResNet-152
23.2
21.7
224x224
32
ImageNet
Inception v1
7.5
10.8
224x224
32
ImageNet
Inception v2
10.5
10.9
224x224
32
ImageNet
Inception v3
15.4
12.7
299x299
32
ImageNet
Inception v4
22.8
21.0
299x299
32
ImageNet
VGG 16
63.1
62.8
224x224
32
ImageNet
VGG 19
64.7
N/A
224x224
32
ImageNet
Architecture
Backbone
Inference time on Nvidia T4 (ms) (Run v1.0)
Inference time on Nvidia T4 (ms) (Run v1.1)
Input size
Training batch size
Trained on
Research paper
EfficientDet
Eff. Net B0
26.5
42.2
512x512
16
COCO 2018
Eff. Net B1
37.9
49.0
640x640
8
COCO 2018
Eff. Net B2
57.2
55.3
768x768
4
COCO 2018
Eff. Net B3
99.1
92.5
896x896
2
COCO 2018
Eff. Net B4
174
167
1024x1024
1
COCO 2018
Eff. Net B5
N/A
N/A
1280x1280
1
COCO 2018
Yolo v2
Darknet 19
21.3
51.8
416x416
64
VOC 2007+2012
Yolo v3
Darknet 53
33.6
53.8
416x416
64
ImageNet 2012
Yolo v3
Keras - Darknet 53
33.6
53.8
416x416
16
ImageNet 2012
Yolo v3 SPP
Darknet 53
58.9
56.5
608x608
64
COCO 2018
Faster-RCNN
Resnet-50
153
N/A
1024x1024*
1
COCO 2018
Resnet-101
195
N/A
1024x1024*
1
COCO 2018
RFCN
Resnet-101
N/A
N/A
1024x1024*
1
COCO 2018
SSD
Inception v2
12.1
46.6
300x300
24
COCO 2018
MobileNet v1
9.9
43.8
300x300
24
COCO 2018
MobileNet v2
9.6
50.6
300x300
24
COCO 2018
SSDLite
MobileNet v2
10.2
50.4
300x300
24
COCO 2018